Non-wandering Fatou Components for Strongly Attracting Polynomial Skew Products
نویسندگان
چکیده
منابع مشابه
A Dichotomy for Fatou Components of Polynomial Skew Products
We consider polynomial maps of the form f(z,w) = (p(z), q(z,w)) that extend as holomorphic maps of CP. Mattias Jonsson introduces in “Dynamics of polynomial skew products on C2” [Math. Ann., 314(3): 403– 447, 1999] a notion of connectedness for such polynomial skew products that is analogous to connectivity for the Julia set of a polynomial map in one-variable. We prove the following dichotomy:...
متن کاملWandering Fatou Components and Algebraic Julia Sets
We study the dynamics of polynomials with coefficients in a nonArchimedean field L, where L is the completion of an algebraic closure of the field of formal Laurent series. We prove that every wandering Fatou component is contained in the basin of a periodic orbit. We give a dynamical characterization of polynomials having algebraic Julia sets. More precisely, we establish that a polynomial wit...
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملWandering Domains in Non-archimedean Polynomial Dynamics
We extend a recent result on the existence of wandering domains of polynomial functions defined over the p-adic field Cp to any algebraically closed complete non-archimedean field CK with residue characteristic p > 0. We also prove that polynomials with wandering domains form a dense subset of a certain one-dimensional family of degree p + 1 polynomials in CK [z]. Given a rational function φ ∈ ...
متن کاملon constant products of elements in skew polynomial rings
let $r$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $r$ and $f(x)=a_0+a_1x+cdots+a_nx^n$ be a nonzero skew polynomial in $r[x;alpha]$. it is proved that if there exists a nonzero skew polynomial $g(x)=b_0+b_1x+cdots+b_mx^m$ in $r[x;alpha]$ such that $g(x)f(x)=c$ is a constant in $r$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $r$ such tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2019
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-018-00127-6